Impacts of increasing anthropogenic soluble iron and nitrogen deposition on ocean biogeochemistry
نویسندگان
چکیده
[1] We present results from transient sensitivity studies with the Biogeochemical Elemental Cycling (BEC) ocean model to increasing anthropogenic atmospheric inorganic nitrogen (N) and soluble iron (Fe) deposition over the industrial era. Elevated N deposition results from fossil fuel combustion and agriculture, and elevated soluble Fe deposition results from increased atmospheric processing in the presence of anthropogenic pollutants and soluble Fe from combustion sources. Simulations with increasing Fe and increasing Fe and N inputs raised simulated marine nitrogen fixation, with the majority of the increase in the subtropical North and South Pacific, and raised primary production and export in the high-nutrient low-chlorophyll (HNLC) regions. Increasing N inputs alone elevated small phytoplankton and diatom production, resulting in increased phosphorus (P) and Fe limitation for diazotrophs, hence reducing nitrogen fixation ( 6%). Globally, the simulated primary production, sinking particulate organic carbon (POC) export. and atmospheric CO2 uptake were highest under combined increase in Fe and N inputs compared to preindustrial control. Our results suggest that increasing combustion iron sources and aerosol Fe solubility along with atmospheric anthropogenic nitrogen deposition are perturbing marine biogeochemical cycling and could partially explain the observed trend toward increased P limitation at station ALOHA in the subtropical North Pacific. Excess inorganic nitrogen ([NO3 ] + [NH4 ] 16[PO4 3 ]) distributions may offer useful insights for understanding changing ocean circulation and biogeochemistry.
منابع مشابه
Impacts of atmospheric nutrient inputs on marine biogeochemistry
[1] The primary nutrients that limit marine phytoplankton growth rates include nitrogen (N), phosphorus (P), iron (Fe), and silicon (Si). Atmospheric transport and deposition provides a source for each of these nutrients to the oceans. We utilize an ocean biogeochemical model to examine the relative importance of these atmospheric inputs for ocean biogeochemistry and export production. In the c...
متن کاملLimited impact of atmospheric nitrogen deposition on marine productivity due to biogeochemical feedbacks in a global ocean model
The impact of increasing anthropogenic atmospheric nitrogen deposition on marine biogeochemistry is uncertain. We performed simulations to quantify its effect on nitrogen cycling and marine productivity in a global 3-D ocean biogeochemistry model. Nitrogen fixation provides an efficient feedback by decreasing immediately to deposition, whereas water column denitrification increases more gradual...
متن کاملAtmospheric deposition of nutrients and excess N formation in the North Atlantic
Anthropogenic emissions of nitrogen (N) to the atmosphere have been strongly increasing during the last century, leading to greater atmospheric N deposition to the oceans. The North Atlantic subtropical gyre (NASTG) is particularly impacted. Here, upwind sources of anthropogenic N from North American and European sources have raised atmospheric N deposition to rates comparable with N2 fixation ...
متن کاملA reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean
We report a new synthesis of best estimates of the inputs of fixed nitrogen to the world ocean via atmospheric deposition and compare this to fluvial inputs and dinitrogen fixation. We evaluate the scale of human perturbation of these fluxes. Fluvial inputs dominate inputs to the continental shelf, and we estimate that about 75% of this fluvial nitrogen escapes from the shelf to the open ocean....
متن کاملAerosol iron and Al solubility from particle size
4 Mineral aerosol deposition is recognized as the dominant source of iron to the open 5 ocean and solubility of iron in the dust aerosol is highly uncertain. Previous solubility 6 estimates range widely from 0.01-80%. We developed two conceptual models to solve 7 for the solubility of different particle sizes—diffusion-controlled model and surface8 controlled model. We are able to produce time ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009